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Abstract Carbon export efficiency (e-ratio) is defined as the fraction of organic carbon fixed through net
primary production (NPP) that is exported out of the surface productive layer of the ocean. Recent observa-
tions for the Southern Ocean suggest a negative e-ratio versus NPP relationship, and a reduced dependency
of export efficiency on temperature, different than in the global domain. In this study, we complement
information from a passive satellite sensor with novel space-based lidar observations of ocean particulate
backscattering to infer NPP over the entire annual cycle, and estimate Southern Ocean export rates from
five different empirical models of export efficiency. Inferred Southern Ocean NPP falls within the range of
previous studies, with a mean estimate of 15.8 (6 3.9) Pg C yr21 for the region south of 30�S during the
2005–2016 period. We find that an export efficiency model that accounts for silica(Si)-ballasting, which is
constrained by observations with a negative e-ratio versus NPP relationship, shows the best agreement
with in situ-based estimates of annual net community production (annual export of 2.7 6 0.6 Pg C yr21

south of 30�S). By contrast, models based on the analysis of global observations with a positive e-ratio ver-
sus NPP relationship predict annually integrated export rates that are � 33% higher than the Si-dependent
model. Our results suggest that accounting for Si-induced ballasting is important for the estimation of car-
bon export in the Southern Ocean.

Plain Language Summary The amount of organic carbon that is exported from the surface to the
deep ocean exerts an important control on atmospheric carbon dioxide and the transfer of organic material
across trophic levels. In this study, we make use of novel satellite information, combined with autonomous
profiling floats, to estimate the efficiency and the amount of organic carbon exported in the Southern
Ocean by phytoplankton. We find that previous global formulations can overestimate the amount of carbon
exported in this region, and that taking into account the oceanic surface silica concentration is necessary to
accurately estimate carbon export in the Southern Ocean.

1. Introduction

The export of organic carbon produced by photosynthetic organisms from the surface euphotic layer to the
deep ocean exerts an important control over the global distribution of nutrient chemical elements, marine
food webs, and the Earth’s climate through the regulation of atmospheric CO2 (Sarmiento & Bender, 1994;
Volk & Hoffert, 1985). The vertical export of carbon and associated biogeochemically relevant elements in
the Southern Ocean is of major significance as it constrains the horizontal export of nutrients from this
region toward lower latitudes, which drives up to 75% of the biological production north of 30�S (Sarmiento
et al., 2004a). Changes in the efficiency of nutrient utilization in the Southern Ocean have the potential to
alter not only the atmospheric CO2 concentration, but also the distribution of low-latitude primary produc-
tion (Sarmiento & Orr, 1991; Sarmiento et al., 2004a).

Carbon export efficiency (e-ratio) is defined as the fraction of organic carbon fixed through net primary pro-
duction (NPP) that is exported out of the surface productive layer of the ocean. Global observations of
marine productivity and particle export generally show a positive relationship between carbon export effi-
ciency and NPP, and a negative (or inverse) relationship between export efficiency and temperature (Dunne
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et al., 2005; Eppley & Peterson, 1979; Henson et al., 2011; Laws et al., 2000; Laws et al., 2011). As a result, sev-
eral empirical models have been developed relating the e-ratio, and derived carbon export rates, to
satellite-based information of NPP, and sea surface temperature (SST) (Henson et al., 2011; Laws et al.,
2011). However, recent evidence suggests that the relationship between e-ratio, NPP, and temperature may
be different in certain oceanic regions, particularly, in the Southern Ocean, suggesting that global parame-
terizations of export efficiency may show important biases in this region (Le Moigne et al., 2016; Maiti et al.,
2013). A compilation of directly measured primary production rates and particle export estimates derived
from drifting sediment traps and thorium-234 (234Th) based measurements (Maiti et al., 2013) shows an
inverse relationship between primary productivity and export efficiency, and a weak relationship between
temperature and export efficiency for the oceanic region south of 40�S. Several studies have investigated
the possible causes for this relationship, suggesting that bacteria and zooplankton may play an important
role in the regulation of export efficiency through grazing, remineralization of organic matter, and produc-
tion/export of fecal pellets (Cavan et al., 2015, 2017; Laurenceau-Cornec et al., 2015; Le Moigne et al., 2016).
Recently, Britten et al. (2017) suggested that the silica-induced ballasting effect of particles obscures the
relationship between export efficiency and temperature in the Southern Ocean, and that accounting for
this ballasting effect reveals the expected inverse effect of temperature on export efficiency. While these
efforts begin to provide insight into the mechanisms regulating carbon export efficiency in the Southern
Ocean, the quantitative implications of these contrasting relationships (between e-ratio, NPP, and tempera-
ture) for the estimation of carbon export have not yet been addressed.

Light detection and ranging (lidar) systems have the potential to retrieve optical information under conditions
where passive sensors are unable to operate (e.g., during night time, thin clouds, and low solar angles). Lidar
systems have been used on board ships and aircrafts to estimate marine optical properties and ecosystem
variables (e.g., phytoplankton pigments, zooplankton biomass, sardines density) (Churnside & Thorne, 2005;
Churnside et al., 1997; Dickey et al., 2011; Hoge et al., 1988). The applications of lidar instruments are particu-
larly relevant for polar regions such as the Southern Ocean, where biogeochemical fluxes are difficult to quan-
tify due to harsh environmental conditions preventing the continuity of in situ ship surveys, and the inability
of passive satellite ocean colour sensors to retrieve information during dark (winter) months. The first applica-
tion of lidar observations from space to quantify marine biogeochemical properties is that of Behrenfeld et al.
(2013), which aimed to estimate phytoplankton carbon and particulate organic carbon (POC) from ocean par-
ticulate backscattering (bbp) data obtained by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
sensor (Hunt et al., 2009; Winker et al., 2009). More recently, Behrenfeld et al. (2017) were able to infer polar
phytoplankton blooms from lidar-based bbp observations, improving the reach of polar satellite biogeochemi-
cal observations commonly achieved by passive satellite sensors (e.g., the Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS), or the Moderate Resolution Imaging Spectroradiometer (MODIS)).

In the present study, we further exploit the space-based lidar data set by complementing missing informa-
tion from MODIS chlorophyll (Chl) retrievals with Chl estimates derived from CALIOP phytoplankton carbon
biomass (Cphyto). We use this merged MODIS and CALIOP Chl product (Chlmerged), combined with CALIOP
Cphyto, to quantify net primary production rates through the full annual cycle in the Southern Ocean over
the entire period of available lidar bbp data (June 2006 to August 2015). Monthly composites of NPP are
used to obtain estimates of carbon export derived from five simple empirical models (equations) of export
efficiency, with different e-ratio, NPP, and temperature relationships. Inferred rates of annual carbon export
are compared with a compilation of in situ-based estimates of annual net community production (ANCP)
(considered equivalent to export production under steady-state conditions; Ducklow & Doney, 2013) largely
derived from profiling floats observations as part of the Southern Ocean Carbon and Climate Modeling and
Observations (SOCCOM) program. Ultimately, we provide a quantitative assessment of the implications of
different relationships between export efficiency, primary productivity, and temperature on carbon export
rates in the Southern Ocean.

2. Methods

2.1. Estimates of Net Primary Production
Following Dunne et al. (2007) and Sarmiento et al. (2004b), we estimate primary productivity from satellite
information on surface Chl, SST, and photosynthetically active radiation (PAR) using the Vertically
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Generalized Production Model (VGPM; Behrenfeld & Falkowski, 1997), the model by Carr (2002) (hereinafter
Carr02), and the model by Lee et al. (1996) as implemented by Marra et al. (2003) (hereinafter Marra03). The
most important difference between these models lies in the sensitivity of their photosynthetic rate to tem-
perature. The VGPM shows an increase in modeled NPP with increasing temperature, reaching a maximum
at 20�C, followed by a decrease in NPP at higher temperatures (>20�C). This reduction in productivity is
related to the connection between warmer waters and increased nutrient limitation in the ocean (Behren-
feld & Falkowski, 1997). The Carr02 and Marra03 models show a more continuous increase in NPP with tem-
perature (Sarmiento et al., 2004b). A comprehensive assessment of the uncertainty associated to NPP
models is presented in Friedrichs et al. (2009), Carr et al. (2006), and Campbell et al. (2002).

We include a fourth model, a Carbon-based Productivity Model (CbPM05; Behrenfeld et al., 2005), which is
based on phytoplankton carbon as indicator of phytoplankton biomass, rather than chlorophyll. We employ
the earlier version of this model (Behrenfeld et al., 2005) as it is constrained by the same satellite informa-
tion as the other three productivity models described above, with the exception of the light attenuation
coefficient at 490 nm (K490 m21). K490 is estimated from an empirical relationship with Chl derived by Morel
et al. (2007):

K49050:16610:07733 Chlðmg m23Þ0:06715 (1)

The satellite information on SST (�C), and PAR (mol quanta m22), used as input for these models was
obtained as monthly Level 3 MODIS products from http://www.science.oregonstate.edu/ocean.productivity/
site.php for the period 2006–2015, and regridded to a 1� by 1� resolution. The estimation of satellite phyto-
plankton biomass (Chl and Cphyto) is detailed below.

2.2. Phytoplankton Carbon and Chlorophyll
Information on surface Chl concentration from MODIS (ChlMODIS) for the same period is obtained as monthly
Level 3 MODIS products from http://www.science.oregonstate.edu/ocean.productivity/site.php. Regions of
missing ChlMODIS data are filled with lidar-based Chl (ChlCALIOP) estimates inferred from CALIOP Cphyto (mg
C m23). In order to estimate Cphyto, we make use of all available (day and night) bbp at 440 nm data from
CALIOP obtained as monthly mean files for June 2006 to August 2015 from http://orca.science.oregonstate.
edu/lidar.php, regridded to a 1� by 1� resolution grid following Behrenfeld et al. (2017). Regions of no data
(gaps) in mean monthly CALIOP bbp maps are filled by performing a 2D interpolation based on the construc-
tion of partial differential equations constrained by the boundary values surrounding the gaps (function
inpaint_nans.m, https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans). Phytoplank-
ton carbon biomass is obtained using an empirically derived relationship between Cphyto and bbp (Behren-
feld et al., 2005, 2017; Graff et al., 2015):

Cphyto512128 mg C m223ðbbp20:00035m21Þ: (2)

ChlCALIOP is computed as the product of Cphyto and a Chl:C ratio of 0.01 (gr gr 21). A Chl:C ratio of 0.01 (gr
gr 21) was determined from an evaluation of the four productivity models under different Chl:C ratios used
to estimate ChlCALIOP (see next section). ChlCALIOP complements our ChlMODIS maps in regions of missing
MODIS retrievals. We refer to this final merged (ChlMODIS and ChlCALIOP) product as Chlmerged.

NPP estimates from the VGPM, Marra03, and Carr02 models used Chlmerged as their phytoplankton biomass
input. The CbPM05 estimates NPP using Cphyto as its indicator of phytoplankton biomass. Since our goal is
to compute NPP and carbon export rates, we mask out pixels where the satellite PAR product is not com-
puted (given that PAR is essential for calculations of primary productivity). This includes conditions where
Top-of-Atmosphere (TOA) radiance is negative, high solar glint, and/or sea ice. We apply this mask to our
satellite-based Cphyto, and derived Chl, NPP, e-ratio, and carbon export estimates.

2.3. Determination of Chl:C for Lidar-Based Chlorophyll
A priori, it is not clear what the correct magnitude of the Chl:C ratio is in regions where optical data from
MODIS is missing: On one hand, low light levels during winter should result in light limitation of phytoplank-
ton growth, inducing high Chl:C ratios as a photoacclimation response (Arteaga et al., 2016; Geider, 1987; Mac-
Intyre et al., 2000); On the other hand, well known iron limiting conditions in the Southern Ocean (Boyd et al.,
2007; Martin, 1990) should reduce Chl synthesis and decrease the Chl:C ratio (Geider & LaRoche, 1994; Sunda
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& Huntsman, 1997). In order to determine the Chl:C ratio that results in satellite estimates of NPP that are
most consistent with existing in situ observations of NPP, we carried out 28 simulations of NPP for each pro-
ductivity model (i.e., 112 simulations in total), varying the Chl:C ratio across three orders of magnitude, from
0.1 to 0.0001 g Chl g21, in those regions where ChlMODIS information is missing, and ChlCALIOP is estimated
instead (supporting information Figure S1). Satellite NPP estimates are grouped into a monthly climatology
representative of a mean annual cycle between 2006 and 2015. We compare the resulting satellite NPP clima-
tology with a data base of in situ carbon-14 (14C) based productivity measurements for the Southern Ocean
(Buitenhuis et al., 2013). The in situ observations were provided as vertically integrated NPP (E. Buitenhuis, per-
sonal communication, 2017) containing 205 data points for the region south of 30�S, were daily measure-
ments of 14C-NPP are grouped by month. All four models show a significant reduction in the root-mean-
square error (RMSE) between predicted and observed NPP around 0.01 g Chl g21 C, despite a small reduction
in the coefficient of determination (R2, obtained from a type II regression model; York, 1966) (supporting infor-
mation Figure S1). A Chl:C 5 0.01 g g21 was chosen to compute ChlCALIOP from Cphyto as this value provides
the largest relative improvement in the comparison between in situ and modeled NPP rates (largest reduction
in RMSE). For simplicity, we assume no seasonality in Chl:C, which is consistent with small Chl:C seasonal vari-
ability estimated from optical methods in the Sub-Antarctic Zone (Thomalla et al., 2017). We do not use this
data comparison exercise to define the best NPP model, but instead use all four models to develop a range of
uncertainty between estimates. Monthly 1� by 1� NPP maps between June 2006 and August 2015, are
obtained from each of these models, based on inferred Chlmerged and Cphyto in the Southern Ocean.

2.4. Equations of Export Efficiency
We assess patterns in Southern Ocean export efficiency (e-ratio) derived from five different simple empirical
models of the e-ratio. Two of these models, which are derived from the analysis of global observations of
NPP and carbon export, represent a positive relationship between e-ratio and NPP (or biomass) (Dunne
et al., 2005; Laws et al., 2011):

e-ratio520:00813T10:06683lnðChlint=ZeuÞ10:426 (equation Dunne05)

e-ratio50:047563 0:782
0:43T

30

� �
NPP0:307 (equation Laws11)

where T is temperature (�C) (input as SST), NPP is in mg C m22 d21, Zeu is the euphotic depth (m) (depth
with 1% of PAR), and Chlint is vertically integrated chlorophyll from surface to Zeu (mg Chl m22). The third

Figure 1. (a) Relationship between e-ratio and temperature in the data set compiled by Maiti et al. (2013). The highest e-ratios at each 2�C interval (red dots) are
used to constrain a linear regression between the maximum e-ratio (max(e-ratio)) and temperature (solid red line). The empirical and mechanistic temperature
dependence of the max(e-ratio) derived by Laws et al. (2011) (dashed red line), and Cael and Follows (2016) (solid blue line), respectively, are also shown. (b) Rela-
tionship between normalized e-ratio (re-ratio) and ln(NPP) (NPP units are mg C m22 d21) for the same data set. Solid black line is the linear regression model
between the variables.
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empirical model does not use NPP as a predictor variable, and relies on temperature alone to infer the e-
ratio (Henson et al., 2011):

e-ratio50:23expð20:08TÞ (equation Henson11)

The fourth empirical model is derived from a data set of matching NPP and particle export estimates for the
Southern Ocean (south of 408S; Maiti et al., 2013), and includes silicate surface concentration, [Si], as a pre-
dictor of the e-ratio (Britten et al., 2017)

e-ratio5ðb11b2T1b4½Si�ÞNPPb3 (equation Britten17)

where coefficients b1 5 3.72, b2 5 20.16, b3 5 20.55 and, b4 520.04 are obtained from Table 1 in Britten
et al. (2017) (corresponding to the Si model for all observations, drifting sediment traps and 234Th-based,
compiled in Maiti et al., 2013). NPP in equation Britten17 is in units of mmol C m22 d21. Surface ocean [Si]
(mmol m23), is obtained from the World Ocean Atlas 2013 monthly climatology (Garcia et al., 2014), (avail-
able at http://www.nodc.noaa.gov/OC5/woa13/) (equation Britten17 has been corrected with respect to its
original publication after personal communication with the authors clarified that subtraction signs should
be substituted for addition signs in Britten et al. (2017).

Finally we derive a fifth empirical model following a set of similar steps as in Laws et al. (2011) to constrain the e-
ratio as a function of temperature and NPP (mg C m22 d21), using the Southern Ocean data set of Maiti et al.
(2013). First, we constrain the maximum e-ratio as a function of temperature by fitting a least square linear
regression model through the maximum e-ratio (max(e-ratio)) in each temperature interval separated by 2�C
(from 22 to 18 �C) (red symbols in Figure 1a). The slope of this relationship between max(e-ratio) and tempera-
ture is larger (i.e., more negative) than the empirical relation set in Laws et al. (2011), and that of Cael and Follows
(2016), which is based on the difference in the temperature sensitivity of autotrophic and heterotrophic meta-
bolic rates. Subsequently, we normalize all e-ratios by the maximum e-ratio predicted by the regression in Figure
1a, and fit a least square linear regression model between the normalized e-ratios (re-ratio 5 e2ratio

maxðe-ratioÞ Þ and log-
transformed NPP (Figure 1b). Combined with the dependence of max(e-ratio) on temperature, the final empirical
equation for the estimation of export efficiency in the Southern Ocean has the following form (6 standard error):

e-ratio5ð0:86 ð60:09Þ20:047 ð60:01Þ TempÞ3

ð1:22 ð60:12Þ20:15 ð60:018Þ logðNPPÞÞ
(equation SO)

Equation Britten17 and equation SO are both based on the negative relationship between export effi-
ciency and primary productivity observed in the Southern Ocean (Maiti et al., 2013). However, equation
SO does not account for the ballasting effect of Si. We force these five empirical models, constrained by
different data sets with distinct inherent relationships between export efficiency, primary productivity,
and temperature, with satellite-based Chl, NPP, SST, and surface Si WOA13 climatology to obtain esti-
mates of the e-ratio. By combining our inferred NPP and e-ratio estimates derived from these empirical
models, we are able to quantify the implications of different relationships between the e-ratio, NPP, and
temperature for derived estimates of organic carbon export in the Southern Ocean. Our satellite-based
Chl, NPP, e-ratio, and carbon export data set is composed of monthly Southern Ocean 1� by 1� maps
between June 2006 and August 2015.

3. Results and Discussion

3.1. Inferred Chlorophyll
The largest gain in photosynthetic biomass information from CALIOP
is evident in the Chlmerged product during austral winter (May–July),
where missing retrievals in ChlMODIS extend southward of � 40�S (Fig-
ures 2a and 2b). As described above, estimates of ChlCALIOP are
obtained as the product of CALIOP-based Cphyto and a Chl:C ratio of
0.01 (g g21) assigned to regions with no Chl estimates in ChlMODIS. In
regions with available ChlMODIS data, the Chl:C ratio is defined as the
ratio of Chl from MODIS and phytoplankton carbon from CALIOP
(ChlMODIS: Cphyto) (Figure 2c). A Chl:C 5 0.01 (g g21) is a realistic ratio

Table 1
Mean Zonally Integrated NPP for the Oceanic Area South of 50� for the Period
2006–2015

This study Pg C yr21 Previous studies Pg C yr21

VGPM 3.0 Arrigo et al. (1998) 4.4
Marra03 3.4 Moore and Abbott (2000) 2.9
Carr02 2.7 Arrigo et al. (2008) 1.9
CbPM05 1.8 Shang et al. (2010) (CbPM08)a 1.7
Mean 2.7 6 0.6b Shang et al. (2010) (VGPM) 1.3

aRefers to the updated CbPM (Westberry et al., 2008). bStandard devia-
tion of NPP models.
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expressed in nutrient-limited phytoplankton cells, observed in both the field and laboratory cultures
(Arteaga et al., 2016; Behrenfeld et al., 2005; Pahlow et al., 2013). Interestingly, 0.01 g Chl g C21 was found
to be the median ratio in laboratory data compiled by Behrenfeld et al. (2002) for light levels between 0.7
and 1.4 moles photons m22 h21. Ha€entjens et al. (2017) computed Chl:C ratios for an extensive array of
floats equipped with bio-optical sensors deployed in the Southern Ocean and found the highest frequency
of Chl:C to be centered around 0.01 g Chl g C21. The normalized frequency histogram of Chlmerged does not
deviates significantly from the frequency distribution of ChlMODIS (Figure 2d), and also matches the fre-
quency distribution of (passive) satellite (MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS)) and
float matchups observed in the Southern Ocean (Ha€entjens et al., 2017). These observations suggest that
0.01 g Chl g C21 is a reasonable value to assign in regions of the Southern Ocean where the actual Chl:C
ratio is unknown.

A Chl:C ratio of 0.01 (g g21) also coincides with the Chl:C ratio predicted in oligotrophic, nutrient limited
areas of the Atlantic and Pacific oceans (Arteaga et al., 2016; Behrenfeld et al., 2005, 2016). A relatively low
Chl:C ratio in the Southern Ocean suggests a ‘‘break down’’ of the photoacclimation mechanism of the cells,
which should otherwise induce chlorophyll synthesis (and consequently high Chl:C) as a response to low
light levels in this high latitude/deep mixing area (Dong et al., 2008). This ‘‘break down’’ might be caused by

Figure 2. Climatology of mean surface chlorophyll concentration (mg Chl m23) estimated by (a) MODIS (ChlMODIS), and (b) CALIOP and MODIS merged product
(Chlmerged) for austral winter months (mean of May–July) in the Southern Ocean (period June 2006 to August 2015). Estimates of surface Chl from CALIOP in
Chlmerged are obtained by assigning a Chl:C ratio of 0.01 (g g21) to regions with no information in ChlMODIS. (c) Chl:C ratio (gr gr21) (ChlMODIS: Cphyto) during winter
in the Southern Ocean. (d) Normalized frequency histogram of chlorophyll concentration obtained from ChlMODIS and Chlmerged. White areas are regions of missing
Chl retrievals.
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a decrease in the electron transfer efficiency of the photosynthetic apparatus due to iron limitation (Geider
& LaRoche, 1994), and/or a chemical reduction of the plastoquinone pool (PQ), which downregulates chlo-
rophyll synthesis under extreme light limiting conditions (Behrenfeld et al., 2016).

3.2. Southern Ocean NPP
All four productivity models used in this study show a similar spatial pattern of inferred NPP in the Southern
Ocean (Figure 3). The VGPM shows the highest NPP estimates along the high productivity region between
the 40�S and 60�S in all three basins (Atlantic, Indian, and Pacific) of the Southern Ocean (Figures 3a and
3b). The Marra03 model shows overall lower meridional variability in predicted NPP (Figures 3c and 3d).
These two models yield higher NPP rates than the Carr02 and CbPM05 models (Figures 3e–3f, and 3g–h,
respectively). All four models show similar seasonal (winter and summer) patterns. We use the mean prod-
uct from these models as our main satellite-based NPP product for the Southern Ocean (Figures 3i and 3j).

We evaluate NPP estimates in four distinct environmental regions of the Southern Ocean (defined as the
oceanic region south of 30�S): The Sub-tropical Zone (STZ), Sub-Antarctic Zone (SAZ), Polar-Antarctic Zone
(PAZ), and Seasonal-ice Zone (SIZ) (Figure 4a). These environmental regions are defined based on a mean
2004–2014 Argo-based climatology of temperature and salinity (Roemmich & Gilson, 2009), following the
criteria of Orsi et al. (1995), and computed by Bushinsky et al. (2017). The SAZ and STZ are the most produc-
tive regions of the Southern Ocean, with maximum NPP estimates � 1,000 mg C m22 d21 (Figure 4b). The
SAZ and PAZ display the largest seasonal variability in NPP rates, with seasonal winter to summer ampli-
tudes of � 600 and 400 mg C m22 d21, respectively. The SIZ shows a seasonal amplitude similar to the PAZ,
and it is the region with the lowest NPP estimates, with summer maxima of � 400 mg C m22 d21 (Figure
4b), and a net primary productivity< 100 mg C m22 d21 during winter months (May–July), with minimum
NPP rates of � 25 mg C m22 d21.

We quantify the impact of Southern Ocean winter retrievals obtained by the CALIOP sensor on inferred NPP
by applying a no-data mask to the merged-based (CALIOP and MODIS) NPP product, analogous to regions
of missing oceanic retrievals in ChlMODIS (referred to as MODIS-simulated product). By conducting this sim-
ple comparison, we assess differences in NPP estimates induced by the distinct geographical coverage of
our merged-based NPP product and a MODIS-only product. Mean monthly NPP retrievals based on merged
CALIOP and MODIS information are obtained throughout the full annual cycle in at least 50% of 1� by 1�

grid points in the STZ, SAZ, and PAZ (Figure 4b, open symbols). The MODIS-simulated NPP product retriev-
als (Figure 4b, black-filled circles) fail to cover at least 50% of grid points of the SAZ during June, and 50%
of grid points of the PAZ for the period May–July. The STZ is the most equatorward region, and sufficient
retrievals from both MODIS-simulated masked NPP and the unmasked merged-based NPP product can be
obtained throughout the full annual cycle. The amount of satellite-based NPP estimates inferred from both
products is considerably reduced in the SIZ. In this region, we are only able to obtain mean monthly
merged-based NPP over the entire annual cycle by lowering the threshold of available grid points with data
to 5%. Applying the same criteria to the MODIS-simulated product, monthly NPP estimates are obtained
between September and April. Any increase in the threshold fraction of available grid points with data in
this region (� 10%), results in a considerable reduction in the number of months with mean NPP estimates
from both products.

The fraction of regionally integrated NPP that is unaccounted for by the MODIS-simulated product relative
to the unmasked merged-based NPP reaches a maximum of 61% during June in the PAZ (Figure 5a). In
June, solar angles are lowest in the southern hemisphere, and unaccounted NPP by the MODIS-simulated
product is highest in all regions of the Southern Ocean. The PAZ, followed by the SAZ, are the regions with
the greatest difference in regionally integrated NPP between the MODIS-simulated product and the
merged-based NPP estimate. These differences are mainly restricted to winter (low solar angle) months
(May–July). As mentioned above, the STZ has MODIS coverage over the entire annual cycle, and thus, no dif-
ference between products is found for this region. We do not quantify the amount of unaccounted NPP in
the SIZ due to the consistent low amount of retrievals from both products throughout the full annual cycle
in this region.

Overall, the amount of unaccounted regionally integrated NPP over the full annual cycle is less than 12%
for the whole Southern Ocean and any of its environmental regions (Figure 5a, annual). This represents 0.24
Pg C yr21 of unaccounted NPP over the entire Southern Ocean. The PAZ and SAZ are the major contributors
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Figure 3. Mean Southern Ocean net primary production from satellite-based Chl, phytoplankton carbon, and Chl:C esti-
mates for austral winter (May–July) and summer (November-January) inferred by the (a, b) VGPM, (c, d) Marra03, (e, f)
Carr02, (g, h) CbPM05, and (i, j) the mean of the four productivity models. NPP estimates represent mean conditions of
the period 2006–2015.
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to this difference, with 0.17 and 0.07 Pg C yr21, respectively, while no appreciable difference is found for
the STZ (Figure 5b). Our regional satellite-based NPP estimates are difficult to compare against previous
studies due to different criteria employed to define environmental regions in the Southern Ocean (Arrigo
et al., 1998, 2008). Our mean annual NPP integrated for the oceanic area south of 30�S is 15.8 (6 3.9, stan-
dard deviation of NPP models) Pg C yr21. Mean annual NPP integrated for the region south of 50�S is 2.7 (6
0.6) Pg C yr21. Inferred NPP for the region south of 50�S is in the same range of previous estimates of 1.9
(period 1997–2006; Arrigo et al., 2008), 2.9 (period 1997–1998; Moore & Abbott, 2000), and 1.5 Pg C yr21

(period 2003–2007; Shang et al., 2010) for the same area (Table 1).

3.3. Export Efficiency in the Southern Ocean
We obtain estimates of carbon export efficiency for the Southern Ocean from the five empirical models
described in section 2.4, forced with satellite net primary production estimates (mean of NPP models), Chl,
SST, and a climatology of surface [Si] (according to the variables required by each e-ratio model) (Figure 6).
These models show important differences in the mean climatological patterns of inferred e-ratio for the
Southern Ocean. Over the entire Southern Ocean, equation Britten17 and equation SO predict the highest
e-ratios (>0.4). Nevertheless, there are important sub-regional differences in the estimation of the e-ratio by
the different empirical models. Equation Dunne05 and Laws11 predict the highest e-ratios in low Southern
Ocean latitudes, � north of 50�S. Estimates of e-ratio from equation Dunne05 begin to increase southward
of 40�S, where NPP and Chl are highest. A similar but less pronounced pattern is observed in estimates
from equation Laws11, particularly in the highly productive region east of South America, in the Atlantic
ocean. Equation Britten17 predicts the highest e-ratios, where export efficiency increases with latitude.
Highest e-ratios from this equation are found southward of 50�S due to a combination of low NPP, low SST,
and high [Si]. Equation SO also shows a clear latitudinal increase from predicted low e-ratios in lower lati-
tudes (north of 50�S, e-ratio< 0.2), to high e-ratios toward higher latitudes (south of 50�S, e-ratio> 0.4).
Inferred patterns of export efficiency are associated with the distinct relationships between e-ratio, NPP,
and biomass (Chl) in each of these models. Equation Dunne05 suggests a positive relationship between
e-ratio and Chl, and equation Laws11 suggest a positive relationship between e-ratio and NPP. Hence, these
equations predict a distribution of e-ratios that is positively associated with patterns of net primary produc-
tion. Conversely, equation Britten17 and equation SO suggest an inverse relationship between export effi-
ciency and primary productivity, resulting in low inferred e-ratios between 40�–60�S. Equation Henson11
predicts overall the lowest e-ratios in the Southern Ocean. This formulation is likely over-simplistic for the
estimation of the e-ratio (Henson et al., 2015). All of these models account to some degree for a negative
relationship between export efficiency and temperature (equation Henson11 depends on this empirical
relationship alone). The inverse relationship between e-ratio and temperature is the driving mechanism of
increasing e-ratios with increasing latitude, observed in the output from all five models (to a lesser extent in
equation Laws11). Equation Britten17 shows the highest e-ratios because it also accounts for the ballasting
effect of Si.

Figure 4. (a) Environmental regions of the Southern Ocean based on 2004–2014 Argo climatology of temperature and salinity (Roemmich & Gilson, 2009), follow-
ing the criteria of Orsi et al. (1995): STZ (blue), SAZ (red), PAZ (green), and SIZ (magenta). (b) Satellite-based monthly NPP obtained from the average of the four
productivity models (6 standard deviation) for the areal mean of the four environmental regions defined for the Southern Ocean in (a). Open circles connected by
color lines represent estimates obtained by the unmasked merged (CALIOP and MODIS) NPP product. Black-filled circles shows monthly estimates from the
MODIS-simulated no data masked product. Estimates for the STZ (blue), SAZ (red), and PAZ (green), are shown when � 50% of 1� by 1� grid boxes within each
environmental region have NPP data. For the SIZ (magenta), symbols are present when � 5% of grid boxes have NPP data.
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Figure 5. (a) Proportion of unaccounted NPP (%) by MODIS-simulated no data masked with respect to the unmasked
merged (CALIOP and MODIS) NPP product MODIS2simulated3100

unmasked CALIOP NPP

� �
in monthly and annually, regionally integrated NPP rates

for the STZ, SAZ, PAZ, and over the entire Southern Ocean (south of 30�S) (SO) (2006–2015 annual climatology) (unac-
counted NPP in the SIZ is not quantified due to the consistent low amount of retrievals from both products throughout
the full annual cycle in this region). (b) Difference in annually integrated NPP for the whole Southern Ocean and each
environmental region between unmasked and masked NPP products (unmasked merged NPP - MODIS-simulated no data
masked) for the 2006–2015 climatology. The 2006–2015 climatology is derived from monthly mean NPP maps, from June
2006 to August 2015. In both plots, estimates represent the average (6 standard deviation) of the four productivity
models used in this study (VGPM, Marra03, Carr02, and CbPM05).
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Figure 6. (continued)

Journal of Geophysical Research: Oceans 10.1002/2018JC013787

ARTEAGA ET AL. E-RATIO MODELS IN THE SOUTHERN OCEAN 2955



Seasonal estimates of e-ratios from each of these models also show contrasting behaviors (Figure 7). In the
STZ, e-ratio estimates from all models are relatively low (< 0.3), and highest e-ratios are predicted during
austral winter. This seasonal trend is mainly driven by the negative relationship between export efficiency
and temperature, which is present in all models. In the other three regions (SAZ, PAZ, and SIZ), the seasonal
amplitude of NPP is larger, resulting in an opposite seasonality of predicted maximum and minimum e-
ratios from the different models. Equation Dunne05 and Laws11 show highest estimates during austral
summer months, when primary productivity and biomass are highest. By contrast, equation Britten17 and
equation SO predict the highest e-ratios during winter, when NPP is lowest. Equation Henson11 shows little
seasonal variability, driven only by seasonal changes in temperature. Overall, the highest e-ratios are pre-
dicted by equation Britten17, particularly in the PAZ and SIZ, where export efficiency during austral winter
can be as high as 0.8. This is due to a combination of low temperature and low NPP. Equation SO shows a
similar increase from the STZ to the SIZ, but the overall magnitude of predicted e-ratios is lower than equa-
tion Britten17. This is because equation SO accounts for the negative relationship between e-ratio and NPP,
but not for the ballasting effect induced by Si utilization (Britten et al., 2017). The divergent patterns in
export efficiency obtained from each of these models have significant impacts on predicted carbon export
rates in the Southern Ocean.

3.4. Implications for Organic Carbon Export
Organic carbon export is computed as the product of satellite-based NPP (mean of NPP models) and the e-
ratio obtained from each of the five models described in section 2.4. Differences in the climatological mean
estimates of organic carbon export resulting from each of the five models are large (Figure 6). Equation
Dunne05 and equation Laws11 show the highest estimates of carbon export, with rates> 250 mg C m22

d21 in the productive band between 40�–50�S, which covers most basins of the Southern Ocean, except for
the eastern Pacific. The spatial pattern of inferred carbon export from these two models is very similar to
that of NPP (Figure 3). By contrast, models that have an inverse relationship between e-ratio and NPP (equa-
tion Britten17 and SO) show reduced spatial variability and lower export rates. Equation Britten17 shows a
flat spatial distribution of export rates, varying from 100 to 200 mg C m22 d21 between 40�–60�S. North of
40� and close to the ice margin, predicted carbon export from this model is< 100 mg C m22 d21. Equation
SO predicts export rates< 80 mg C m22 d21 throughout the entire Southern Ocean. Equation Henson11
(which only depends on temperature) also shows reduced spatial variability in carbon export, with rates of
� 50 mg C m22 d21 in most of the Southern Ocean, with the exception of regions of high primary produc-
tivity and high inferred phytoplankton biomass (Figures 2 and 3), where estimates of carbon export can be
up to 200 mg C m22 d21.

Differences between models are also evident in predicted monthly estimates of carbon export for the differ-
ent environmental regions defined for the Southern Ocean (Figure 8). Equation Dunne05 and Laws11 show
high seasonality and the highest summer export rates, particularly in the SAZ, where inferred carbon export
varies between 50 and 350 mg C m22 d21. Equation Britten17 and equation SO show reduced seasonal var-
iability and higher winter export rates than the other models in the PAZ and SIZ. Equation Henson11 also
shows low seasonality and low export rates, with maximum estimates � 100 mg C m22 d21 in the SIZ.

A clear pattern emerges from the comparison of carbon export rates in the Southern Ocean derived from
the five empirical models of export efficiency used in this study: Models that account for a positive relation-
ship between e-ratio and Chl, or e-ratio and NPP, show the highest rates and the largest seasonal and spa-
tial variability in inferred export rates (Dunne05, Laws11). In contrast, models that account for an inverse
relationship between e-ratio and NPP (equation Britten17 and equation SO) or ignore any relationship
between these variables (equation Henson11), predict in general lower export rates and a more homoge-
nous spatial pattern of carbon export in the Southern Ocean.

Figure 6. Mean annual export efficiency (e-ratio) and derived carbon export rates in the Southern Ocean (computed as
the product of e-ratio and satellite-based NPP) predicted by the five empirical models of export efficiency evaluated in
this study: (a and b) Dunne05, (c and d) Laws11, (e and f) Henson11, (g and h) Britten17, and (i and j) SO. Estimates are
obtained for the 2006–2015 annual climatology of satellite-based Chl and NPP, MODIS SST, and WOA13 Si climatology.
Outputs are obtained for the mean of the four productivity models used in this study (VGPM VGPM, Marra03, Carr02, and
CbPM05).
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Figure 7. Mean monthly e-ratio estimates obtained from the five empirical models of export efficiency evaluated in this
study for each of the environmental regions defined in the Southern Ocean: (a) STZ, (b) SAZ, (c) PAZ, and (d) (SIZ).
Estimates represent the average (6 standard deviation, shaded area) output of the four productivity models used in this
study.
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Figure 8. Mean monthly estimates of carbon export (mg C m22 d21) predicted as the product of satellite-based NPP and
e-ratio obtained from the five empirical models of export efficiency evaluated in this study for each of the
environmental regions defined in the Southern Ocean: (a) STZ, (b) SAZ, (c) PAZ, and (d) (SIZ). Estimates represent the
average (6 standard deviation, shaded area) output of the four productivity models used in this study.
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3.5. Differences in Annual Carbon Export
We compare the climatological zonal mean annual carbon export (mol C m22 yr21) inferred from the five
export efficiency models, and a compilation of in situ-based estimates of annual net community production
(ANCP) largely composed by profiling floats observations as part of the SOCCOM program (Johnson et al.,
2017) (Figure 9). Under steady-state conditions (i.e., no net accumulation/loss of organic carbon), carbon
export should equal net community production (NCP) in the upper productive oceanic layer, where NCP
represents the net production of organic carbon after accounting for the respiration needs of the autotro-
phic and heterotrophic components of the ecosystem (Ducklow & Doney, 2013). Thus, assuming that most
of the organic carbon exported out of the surface ocean over the annual cycle is in the form of particles,
estimates of ANCP and carbon export should converge. The ANCP estimates include observations of nitrate
drawdown/consumption in the productive layer (Johnson et al., 2017; Lourey & Trull, 2001; MacCready &
Quay, 2001), time series analysis of dissolved nutrients, dissolved inorganic carbon (DIC), and surface ocean
pCO2 (Bender & J€onsson, 2016; McNeil & Tilbrook, 2009; Munro et al., 2015; Shadwick et al., 2015), and
changes in mesopelagic oxygen inventory (Hennon et al., 2016; Martz et al., 2008; Riser & Johnson, 2008).
ANCP estimates are binned and averaged by 5� latitudinal bands. These observations indicate ANCP (carbon
export)< 1 mol C m22 yr21 (12 gr C m22 yr21), between 20�S and 35�S, an increase in export to �3 mol C
m22 yr21 (36 gr C m22 yr21) between 40�S and 50�S, and a subsequent decline in export to �1.5 mol C
m22 yr21 (18 gr C m22 yr21), south of 60�S. Our empirical model-based estimates predict certain features of
this latitudinal pattern, with clear differences in the magnitude of exported carbon between models. Models

Figure 9. Zonal mean annual carbon export (mol C m22 yr21) computed as the product of satellite-based NPP and e-ratio
obtained from the five empirical models of export efficiency evaluated in this study. Model estimates (continuous solid
line) represent the average (6 standard deviation, shaded area) output of the four productivity models used in this study.
Also shown are in situ estimates (Obs) of ANCP from multiple methods compiled by Johnson et al. (2017) and binned
(averaged) by 5�S latitudinal bands (6 Error bars at 90% confidence intervals based on the standard deviation of all data
in each band). There are no in situ-based ANCP observations between 30�S and 35�S in the data set of Johnson et al.
(2017). R2 between models and observations is computed over the entire latitudinal range, applying a linear interpolation
between the in situ-based ANCP estimates.
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that account for a positive relationship between e-ratio and Chl (equation Dunne05), and e-ratio and NPP
(equation Laws11), predict the highest estimates of carbon export north of 50�S. Models that have an
inverse relationship between e-ratio and NPP (equation Britten17 and equation SO) yield lower annual
export rates north of 50�S. Equation Britten17 agrees well within the range of uncertainty of situ-based esti-
mates of ANCP over most of the latitudinal range between 20�S and 70�S. We calculate the coefficient of
determination (R2) between models and observations over the entire latitudinal range, applying a linear
interpolation between the in situ-based ANCP estimates (Figure 9). Equation Britten17 presents the largest
agreement with observations, R2 5 0.89, followed by equation Henson11, with an R2 5 0.72, and equation
SO with R2 5 0.52. Equation Britten17 and equation SO are similar in the sense that both have an inverse
relationship between e-ratio and NPP, and both are constrained by data on export, temperature, and NPP
exclusively for the Southern Ocean (Maiti et al., 2013).

The larger agreement between equation Britten17 and in situ-based ANCP estimates (compared to equa-
tion SO) is likely due the inclusion of [Si] in this empirical model, which accounts for the enhancement of
vertical particle flux caused by the ballasting effect associated with inorganic minerals (Armstrong et al.,
2001; Sanders et al., 2010). The compilation of export efficiency estimates for the Southern Ocean from Maiti
et al. (2013) suggests a reduced dependency of the e-ratio on temperature with respect to global observa-
tions (Dunne et al., 2005; Laws et al., 2000). Britten et al. (2017) re-analyze the data compilation of Maiti
et al. (2013) and showed that the effect of temperature on the regulation of the e-ratio is obscured by the
offsetting interaction of temperature-driven respiration and silica ballast. Silica-rich waters upwell in the
Southern Ocean and travel northward (Sarmiento et al., 2004a). During this trajectory, high [Si] promotes
particle export, while increase surface warming during the northward trajectory enhances respiration of
organic matter. This leads to a counteracting effect between [Si] and temperature on export efficiency.
Equation Britten17 reveals the inverse effect of temperature on the e-ratio once silica ballast is accounted
for. This mechanism is particular for the Southern Ocean, and thus, does not imply that equation Britten17
would yield accurate e-ratio estimates in other regions.

Differences between estimates of integrated annual carbon export for the Southern Ocean (south of 30�S)
vary by a factor of � 3 (Figure 10). Our best estimate of carbon export for the Southern Ocean (based on
the comparison with observations of ANCP) is that of equation Britten17 5 2.7 (6 0.6) Pg C yr21. Global esti-
mates of carbon export cluster around 10 Pg C yr21 (DeVries & Weber, 2017; Dunne et al., 2005; Laws et al.,

Figure 10. Regionally integrated annual carbon export (Pg C yr21) for the Southern Ocean (south of 30�S) (SO) and each
of the environmental regions, inferred from each of the five empirical models of export efficiency evaluated in this study.
Estimates represent the average (6 standard deviation) output of the four productivity models used in this study.
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2000; Schlitzer, 2002), and 5 Pg C yr21 (Henson et al., 2011; Siegel et al., 2014). In this context, our best esti-
mate for the Southern Ocean represents � 25%, and 50% of the global organic carbon exported from the
surface ocean, respectively. Equation Dunne05 and Laws11 predict the highest estimates of carbon export
in the Southern Ocean (> 3 Pg C yr21), while equation Henson11 and equation SO predict the lowest rates
(> 1.5 Pg C yr21). The difference between model estimates is highest in the STZ and SAZ, where NPP is
highest. Regionally integrated estimates of carbon export from the different models converge toward SIZ,
where differences in empirical e-ratio models used to estimate carbon export are negligible due to overall
low net primary productivity rates in this region.

3.6. How to Interpret the Inverse Relationship Between Export Efficiency and Primary Productivity in
the Southern Ocean?
A problematic feature in the Southern Ocean observations compiled by Maiti et al. (2013), is that there is no
obvious relationship between carbon export and NPP (the relationship is highly scattered, Supporting infor-
mation Figure S2). Given that the e-ratio is defined as the ratio of export production:NPP, and there is no
clear relationship between these variables (i.e., export production and NPP), a possible interpretation of the
inverse e-ratio versus NPP relationship, is that it is spurious (Atchley et al., 1976; Pearson, 1896). Ratios are
problematic for statistical analysis (Packard & Boardman, 1988). Given that NPP is involved in both the inde-
pendent variable ‘‘X’’ (X 5 NPP), and the dependent variable ‘‘Y’’ (Y 5 e-ratio 5 export production

NPP ), as NPP
becomes larger, there would be a tendency for export production

NPP to become smaller (Berges, 1997). This statisti-
cal difficulty does not necessarily invalidate the observation of an inverse e-ratio versus NPP relationship
(Prairie & Bird, 1989). There could be real biogeochemical mechanisms preventing the emergence of a posi-
tive relationship between export production and NPP in the Southern Ocean, which could be interpreted as
a decrease in export efficiency with increased primary productivity (Cavan et al., 2017). Given the good
agreement of equation Britten17 with the in situ-based ANCP observations, we believe that there is descrip-
tive value in the data of Maiti et al. (2013), particularly when combined with information from surface Si
concentration.

To our knowledge, this problematic feature has not been considered in previous studies of export efficiency
in the Southern Ocean. Perhaps the most unambiguous way forward is to analyze directly the relationship
(or lack thereof) between carbon export and primary productivity, and/or by aiming to explain observed
patterns in export efficiency from environmental variables different from export and NPP.

4. Conclusions

By combining novel lidar (CALIOP) data of ocean particulate backscattering with information from a passive
satellite sensor (MODIS), we infer mean monthly phytoplankton biomass (Chl and Cphyto) and NPP estimates
for the Southern Ocean over the entire annual cycle for the period June 2006 to August 2015. Mean monthly
NPP estimates in the Southern Ocean are highest in the STZ (400–800 mg C m22 d21) and SAZ (200–
1,000 mg C m22 d21), and lowest in the PAZ (100–600 mg C m22 d21) and SIZ (25–400 mg C m22 d21). Our
mean annual NPP integrated for the oceanic area south of 30�S is 15.8 (6 3.9, standard deviation of NPP mod-
els) Pg C yr21. Mean annual NPP integrated for the oceanic region south of 50�S is 2.7 Pg C yr21 (6 0.6), which
agrees within the uncertainty of previous estimates. Using our satellite-based NPP rates, we assess carbon
export estimates from five different empirical models of export efficiency constrained by different relation-
ships between Chl, NPP, temperature, surface Si concentration, and e-ratio. A key distinction between these
formulations is their empirical relationship between export efficiency and primary productivity. Models with a
negative e-ratio versus NPP relationship predict a latitudinal increase in export efficiency in the Southern
Ocean. Equation Britten17, which accounts for the silica-induced ballasting effect, estimates considerably high
e-ratios (> 0.4) south of 50�S. Models that have an inverse e-ratio versus NPP relationship, or that depend
only on temperature as a predictor of e-ratio, estimate a reduced spatial variation in carbon export, in line
with recent observationally constrained estimates (Emerson, 2014). Equation Britten17 agrees well within the
uncertainty of mean annual carbon export inferred from in situ-based ANCP estimates in the Southern Ocean.
Our results suggest that empirical models based on global observations (equation Dunne05 and equation
Laws11) can be biased in the Southern Ocean, predicting annually integrated rates � 33% higher than our
best estimate (equation Britten17 5 2.7 Pg C yr21).
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Our results agree with recent analysis which indicate that silica-induced ballasting is a key process to take
into account for the estimation of carbon export in the Southern Ocean (Britten et al., 2017). It is still not
clear, however, what drives an inverse relationship between export efficiency and primary productivity in
this region (assuming that this relationship is not entirely driven by an statistical artifact). Recent evidence
points to the role of zooplankton in particle grazing and fragmentation as an important mechanism in the
regulation of particle export (Cavan et al., 2017). Future efforts should aim to revise mechanistic parameter-
izations of marine carbon fluxes in ecological models in order to improve our understanding of the pro-
cesses driving regional differences in carbon export efficiency (e.g., Henson et al., 2015). This will lead to
improved reliability in estimates and projections of the efficiency of the biological carbon pump.
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